Archive for June, 2008


While the discussion about ATLAS and CMS, general-purpose particle physics experiments is continuing scientists do their work. The ambition project called for help to see a wide range of particles and phenomena produced in LHC collisions has involved approximately 2,000 physicists from some 35 countries.

They will use the data collected from the complex ATLAS and CMS detectors to search for new phenomena, including the Higgs boson, super symmetry and extra dimensions. They will also measure the properties of previously discovered quarks and bosons with unprecedented precision, and be on the lookout for completely new, unpredicted phenomena.

What is Higgs boson? This is “a fundamental particle predicted by theorist Peter Higgs, may be the key to understanding why elementary particles have mass”, Howard E. Haber from University of California, Santa Cruz explanes. “Explaining the connection, I am reminded of the puzzler, “If sound cannot travel in a vacuum, why are vacuum cleaners so noisy?” This riddle actually touches on a profound insight of modern physics: the vacuum—or empty space—is far from empty. It is indeed “noisy” and full of virtual particles and force fields. The origin of mass seems to be related to this phenomenon.
In Einstein’s theory of relativity, there is a crucial difference between massless and massive particles: All massless particles must travel at the speed of light, whereas massive particles can never attain this ultimate speed. But, how do massive particles arise? Higgs proposed that the vacuum contains an omnipresent field that can slow down some (otherwise massless) elementary particles—like a vat of molasses slowing down a high-speed bullet. Such particles would behave like massive particles traveling at less than light speed. Other particles—such as the photons of light—are immune to the field: they do not slow down and remain massless.

Although the Higgs field is not directly measurable, accelerators can excite this field and “shake loose” detectable particles called Higgs bosons. So far, experiments using the world’s most powerful accelerators have not observed any Higgs bosons, but indirect experimental evidence suggests that particle physicists are poised for a profound discovery.”